
1 Modeling targeting kinetics

We here explain the details of the model introduced in the main text (Fig. 1a). We consider a single DNA
target sequence with PAM, in contact with a Cas9-sgRNA solution at fixed concentration. After a Cas9-
sgRNA binds the DNA at its PAM site with a rate proportional to the Cas9-sgRNA concentration, R-loop
formation (Cas9 mediated strand exchange between gRNA and DNA) is modeled as a sequential process
where the sgRNA-DNA hybrid stochastically grows and shrinks with single-nucleotide increments. The
DNA strand can only be cleaved once a complete R-loop is formed (20 bp). We model target recognition
as a hopping process along the sequence sol,PAM, 1, 2, ...., 20, clv of states. The process starts in the
sol state, where our DNA molecule is empty, and eventually ends in the absorbing clv state, where the
DNA molecule is cleaved. We will for notational convenience also refer to the same sequence of states as
−1, 0, 1, 2, ...., 20, 21.

1.1 The Master equation and its general solution

Letting Pn(t) denote the probability to be in state n at time t, and kf(n)/kb(n) the rates for forward
(n → n + 1)/backward (n → n − 1) transitions, we can describe the evolution of the probabilities with
the Master equation

∂P−1

∂t
= −kf(-1)P−1(t) + kb(0)P0(t) (S1)

. . .

∂Pn

∂t
= kf(n− 1)Pn−1(t)− (kf(n) + kb(n))Pn(t)

+ kb(n+ 1)Pn+1(t)
(S2)

. . .

∂P20

∂t
= kf(19)P19(t)− (kf(20) + kb(20))P20(t) (S3)

The fraction of cleaved DNA (for active Cas9) is directly set by the fraction of uncleaved DNA, P21(t) =
1−
∑

n≤20 Pn(t), and we do not need to explicitly include the cleaved (21st) state in the Master equation.

Defining the vector P⃗ (t) = [P−1(t), P0(t), P1(t), . . . , P20(t)]
T , the formal solution to Equations S1 and

S2 can be written as

P⃗ (t) = e−KtP⃗ (0), (S4)

where K is a tri-diagonal rate matrix. If we define kf(−1) = kb(21) = 0, we can give the elements of K
as

Knm =


−kf(n− 1) n = m+ 1

kf(n) + kb(n) n = m

−kb(n+ 1) n = m− 1

0 |n−m| > 1

, n,m ∈ {−1, 0, 1, . . . , 20} (S5)

1.2 The mechanistic model assumptions

In the text we introduce four mechanistic model assumptions: (1) we can average over mismatch types,
and only keep track of matches and mismatches; (2) dCas9 has all the same rates as Cas9, apart from
that the cleavage rate kcat = kf(20) = 0. (3) Introducing a mismatch at n, changes only kb(n); (4)
kf(0) = kf(1) = . . . = kf(19) ≡ kf , and independent of mismatch pattern.

We use the reference concentration 1nM ([Cas9-sgRNA] = CCas9−sgRNA/1nM), and take the rate of
binding from solution to grow linearly with concentration kf(−1) = k1nMon [Cas9-sgRNA]. Taken together,
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forward transitions are assigned the following rates

kf(n) =


k1nMon [Cas9-sgRNA], n = −1,

kf, n ∈ [0, 1, ..., 19],

kcat, n = 20.

(S6)

1.3 Parameterization in terms of free energies

The collection of all backward and forward rates completely determined the probabilistic evolution by
the system, and thus calculate the ensemble average of any quantity defined over our state space. Still, it
is informative to translate these rates into free-energy differences between states. To do this, we imagine
that two neighboring states to be allowed to mutually equilibrate. Introducing the free energy of state n
as Fn (in units of kBT ), equilibration between states n and n+1 means both that the relative occupancy

is described by Boltzmann weights PEQ
n /PEQ

n+1 = exp[−(Fn−Fn+1)] and that there are no net probability

currents between the states PEQ
n kf(n) = PEQ

n+1kb(n+ 1). Taken together, these relationships tie rates to
free-energy differences through

Fn − Fn−1 = ln[kb(n)/kf(n− 1)]. (S7)

This equation, together with model assumption (1)-(4) and our assumption of first order binding to the
PAM, can be used to write

Fn − Fn−1 =


F 1nM
PAM − ln([Cas9-sgRNA]), n = 0

ϵC(n), match at n ∈ [1, 2, ...20]

ϵC(n) + ϵI(n) mismatch at n ∈ [1, 2, ...20].

(S8)

If the nth base of the target is complementary to the corresponding base of the guide, the energy of the
Cas9-sgRNA-DNA ternary complex increases by ϵC(n)× kBT when incorporating the basepair into the
R-loop. The Cas9 protein is known to interact with both DNA strands, as well as undergo conformational
changes during the process of R-loop formation, and ϵC(n) can take both positive (kf(n − 1) < kb(n))
and negative (kf(n − 1) > kb(n)) values. If the nth base of the target does not match the guide’s base,
the ternary complex gets penalized with an energetic cost ϵI(n) ≥ 0.

In conclusion, we have built a general mechanistic model in terms of rates and Equation S4, and
have re-parametrized it in terms of 41 free energies (F 1nM

PAM, 20 × ϵC(n)’s, 20 × ϵI(n)) and three forward
rates (k1nMon , kf, and kcat).

2 Calculating measured quantities

Here we explain how we calculated quantities to compare to experimental high-throughput data sets for
training and validation.

2.1 Calculating effective cleavage rates for NucleaSeq

We use the solution to the Master Equation (Equation S4) to calculate the expected cleaved fraction
for Cas9 at any complementarity pattern, and compare this to the read counts acquired during the
NucleaSeq experiment [1]. NucleaSeq is performed at saturating concentrations of Cas9-sgRNA, which
we model by setting FPAM = F0 = −1000. As done in the original experiment, we record the fraction of
DNA that remains uncleaved (

∑
n≤20 Pn(t)) at the time points 0 s, 12 s, 60 s, 180 s, 600 s, 1800 s, 6000

s, 18000 s, and 60000 s, and fit out a single effective cleavage rate kclv.
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2.2 Calculating effective association constants for CHAMP

We model the CHAMP experiments [1] by calculating the bound fraction (Pbnd(t) =
∑20

n=0 Pn(t)) of
dCas9 (kf(20) = kcat = 0) after 10 min at concentrations 0.1 nM, 0.3 nM, 1 nM, 3 nM, 10 nM, 30 nM,
100 nM and 300 nM. Assuming the system has had sufficient time to equilibrate within the 10 minutes
for which the experiment lasts, the series of occupancies should follow the Hill equation

PEQ
bnd =

[Cas9-sgRNA]

[Cas9-sgRNA] + 1/KA
. (S9)

We follow the experimental protocol and fit Equation S9 to the bound fraction to extract apparent
association constant KA for the (off-)target of interest.

2.3 Calculating effective association rates for HiTS-FLIP

To predict measured association rates in the HiTS-FLIP experiment [2], we again compared the floure-

cence signal to our calculated bound fraction (Pbnd(t) =
∑20

n=0 Pn(t)) for dCas9. Following Boyle et
al. [2] we use linear regression to fit a straight line passing through the origin to the bound fraction
(Pbnd ≈ keffon t) at time points t1 = 500s, t2 = 1000s and t3 = 1500s.

3 Parameter estimation

Here we describe the global cost function we seek to minimize, as well as the algorithms used to search
for the global minimum.

3.1 A global cost function

All fits are performed using a custom written Simulated Annealing (SA) algorithm [3] (see below) to
minimize the total relative square devitation between data and prediction. The global cost function χ2

used for training adds contributions from the NucleaSeq data and the CHAMP data,

χ2 = χ2
log10 kclv

+ χ2
log10 KA

(S10)

As the recorded rates and association constants span many orders of magnitude, we will seek to minimize
the relative square deviation; we do this by minimizing the square deviation of the log measures log10(kclv)
or log10(KA). The response of kclv and KA show clear patterns for both one and two mismatches, while
especially the cleavage activity is much lower for three mismatches and above. We therefor limit our
training set to one and two mismatches. The number of available mismatch configurations with two
mismatches (20×19/2 = 190 in total) exceeds that of single mismatches (20 in total), and to equalize
the weight of each data set we consider the total residues averaged over their respective number of
configurations

χ2
m =

χ2
on,m

Non,m
+

χ2
1xMM,m

N1xMM,m
+

χ2
2xMM,m

N2xMM,m
, m = log10 kclv, log10 KA. (S11)

with Non,m = 1, N1xMM,m = 20 and N2xMM,m = 190.

Using a sequence-independent model, we aggregate all data points sharing the same mismatch con-
figuration in one weighted average value. If we measure value mi, and have a measurement error of δmi,
we use the weighted average

m̂[mm-pattern] =
∑

i∈
(
sequences with
mm-pattern

)wimi , wi =
1/δm2

i∑
j∈

(
sequences with
mm-pattern

) 1/δm2
j

(S12)
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to compare to our model prediction. The sums in Equation S12 run over all off-target sequences in the
library that have the same mismatch pattern. This particular weighted average is chosen as it minimizes
the square deviation if we have complete freedom in choosing the average for each position. Though our
model is much more constrained then this, we use this weighing as a good fit to the weighted averaged
data then has the potential to represents a good fit to the raw data. The error of the mean can be
calculated as

δm̂2
[mm-pattern] =

∑
i∈

(
sequences with
mm-pattern

)w2
i δm

2
i . (S13)

Using the weighted averaged data points, the cost function is built up from

χ2
on,m =

(m̂model
on − m̂experiment

on )2

δm̂2
on

, χ2
1xMM,m =

20∑
n=1

(m̂model
[n] − m̂experiment

[n] )2

δm̂2
[n]

χ2
2xMM,m =

19∑
n=1

20∑
k=n+1

(m̂model
[n,k] − m̂experiment

[n,k] )2

δm̂2
[n,k]

(S14)

The mismatch pattern [n] represents a sequence with a single mismatch at position n, and [n, k] represents
a sequence with two mismatches, one at position n and one at position k.

3.2 Simulated-annealing optimization

The SA algorithm [3] is commonly used for high-dimensional optimization problems, such as the one
presented here. The standard method is well established [3], and we here only give the special adjustments
made to suit our problem. In every iteration we add numbers drawn from the uniform distribution on
the interval (−δ, δ) to each of the 41 model parameters representing free-energies and to the base 10
logarithm of those describing rates (see above). To initiate the fit, we fix δ (the step size) at 0.1 and
adjust the effective temperature until an acceptance ratio between 40%-60%, based on the Metropolis
condition, is reached. After this initial cycle, the effective temperatures follow an exponential cooling
scheme with a 1% cooling rate (Tk+1 = Tk ∗ 0.99k). At every temperature, we adjust the step size of
the moves (δ) until an acceptance ratio between 40-60% is reached, thereby enabling the parameters to
change by smaller increments as the temperature decreases while avoiding accepting too many parameter
configurations that worsen the χ2. This check is performed every 1000 steps. Once the check is passed,
an additional 1000 steps are used to let the system ’equilibrate at temperature Tk’ [3] before moving on
the to next temperature (k → k + 1). As stop criteria we use

| ⟨χ2⟩k − ⟨χ2⟩k+1 | ≤ 10−5 ⟨χ2⟩k (S15)

In the above, ⟨χ2⟩k denotes the average of χ2 over the 1000 iterations at temperature Tk. To avoid
premature stops, we further require the temperature to have dropped to one percent of its initial value.

To judge how reliably our fits find a minimum, we repeated our SA fit 55 times. Unfortunately, some
fits clearly get stuck far from any global optimum, and in Fig. 2-3 we post-selected 30% of the best
estimates as judged by our global cost function. These solutions differ on average by less than 2% in (log)
association constants, and less than 9% in (log) cleavage rates. Though the discrepancy among some of
the estimated parameters (Fig. 2) points to that we have not found the single global optimum, the fact
that they all make essentially the same predictions points to that we have extracted what information
we can from the data.

4 Removing undetermined quantities

Fig. 2 revealed that not all of our 44 parameters are tightly constrained by the given data. At the
same time, some fit parameters are well determined, and we here coarse grain our model to remove the
undetermined degrees of freedom.
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4.1 Local equilibration in metastable states

The on-target free-energy landscape shows a well-defined intermediate surrounded by two barriers of
relatively high but poorly determined free energies. The rate of R-loop progression kf is also poorly
determined. To understand why many fits still performed well, consider two facts: first, if a region
is locally equilibrated, then the local distribution among states is independent of the forward rate kf;
second, if the time taken during the transition between locally equilibrated regions is negligible compared
to the time spent in the locally equilibrated states before transitioning, then a change in kf can always
be completely compensated for by a change in free energies in the barrier heights (∆F ). To see the
latter point, consider that the effective transition rate can be written as

keffective ≈ kfe
−∆F (S16)

To test the hypothesis that it is indeed a fundamental aspect of the process (local equilibration) that
precludes us from finding a single optimum, we increased the on-target’s free-energy values by a constant
value of ϵkBT , both for positions 1-8 and 13-8 (Fig. S2A). As a result, the two barriers surrounding the
locally stable intermediate are increased from ∆F → ∆F + ϵ (Fig. S2A). To compensate this barrier
change we scale the R-loop progression rate as kf → eϵ × kf (Fig. S2B). Fig. S2C-D show that after
rescaling the rate and barriers using ϵ = 2.5kBT , the resulting prediction of NucleaSeq and CHAMP
data does not change. We conclude that kf and ∆F are co-dependent due to local equilibration and
rapid transitions between equilibrated states, which motivated us to construct the coarse-grained model
as follows.

4.2 The coarse-grained model

To construct the coarse-grained model put forth in Fig. 3, we start by recognizing a (locally) stable
intermediate R-loop of length 11-12 nt in the on-target’s free-energy landscape (Fig. 2A). Local equili-
bration means that the system equilibrates amongst the states 7-13 nt on a much shorter timescale than
it can transition over the larger barriers in the free-energy landscape, from either the PAM bound open
R-loop state (state 0) or the cleavage competent closed R-loop state (state 20).

The inverse average time to transition from the open to the intermediate state sets the effective tran-
sition rate kOI. To calculate kOI we first determine the microscopic state with the minimum of free-
energy between 7 and 13 denoted by location nI. Next, we describe the evolution of the subsystem
P⃗OI(t) = [P0, P1, P2, ...., PnI−1]

T with the corresponding submatrix KOI , that determines the evolution

of our subsystem P⃗OI(t) = e−KOItP⃗OI(0) (Equation S4). As initial condition, all DNA are unbound.The
probability distribution ΨOI(τ) of entry times into the intermediate state alone can be calculated as

ΨOI(τ) =
∂PnI(τ)

∂τ
= −

nI−1∑
n=0

∂Pn(τ)

∂τ
, (S17)

if we set kb(0) = 0 and kb(nI) = 0. From here, we determine kOI as the (inverse) first moment of ΨOI,

kOI =

(∫ ∞

0

τΨOI(τ)dτ

)−1

= −

(
nI−1∑
n=0

∫ ∞

0

τ
∂Pn

∂τ
dτ

)−1

=

(
nI−1∑
n=0

∫ ∞

0

Pn(τ)dτ

)−1

=

(
nI−1∑
n=0

(∫ ∞

0

e−KOIτdτ

)
Pn(0)

)−1

=

(
nI−1∑
n=0

(K−1
OI P⃗OI(0))n

)−1

.

(S18)

A similar process is used to calculate the rate of entering the closed state from the intermediate state,
in which we construct the sub-system consisting of states nI through 19 and initiate the system at state
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nI. The backward rates kIO and kCI can be determined in a similar manner, or directly by using the
detailed balance condition (Equation S7), with coarse-grained energies

FO = FPAM = F0, FC = F20, FI = − ln

[
13∑

n=7

e−Fn

]
. (S19)

The last of these reflecting the free-energy of a system allowing to equilibrate between states 7 and 13.
Fig. 3 shows the coarse-grained parameters, together with kon = kf(−1), koff = kb(0) and kclv = kf(20)
which keep their original interpretation.
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Supplementary	Figure	Legends	
	
Supplementary	Figure	1|	Additional	comparison	to	in	vitro	data	(relates	to	Fig.	1).	
a,	Correlation	plot	of	experimental	cleavage	rates	for	Cas9	(NucleaSeq)	versus	
association	constants	(CHAMP).	Both	quantities	are	normalized	and	compared	to	their	
respective	on-target	value.	b-d,	Correlation	plots	of	our	model	predictions	(after	fitting)	
versus	(b)	experimental	cleavage	rates	from	NucleaSeq,	(c)	association	constants	from	
CHAMP,	and	(d)	binding	rates	from	HiTS-FLIP.	e,	Association	constants	of	CHAMP	for	
library	members	with	more	than	2	mismatches.	The	library	contained	a	series	of	
mismatched	off-targets,	all	containing	different	numbers	of	mismatches	placed	
consecutively.	Start-	and	end-points	of	these	series	of	mismatches	are	indicated	on	
vertical/horizontal	axis.	f,	Validation	of	model;	prediction	of	the	association	constants	
shown	in	e.	
	
Supplementary	Figure	2|	Co-dependency	of	microscopic	model	parameters	
(relates	to	Fig.	2).	a,	Free-energy	landscape	obtained	from	our	fits	(blue)	and	a	
transformed	landscape	with	the	two	barriers	raised	by	2.5	𝑘!𝑇	(pink).	b,	To	
compensate	for	the	change	in	barrier	height,	we	enhanced	the	rate	of	progressing	the	R-
loop	by	a	factor	of		𝑒".$ ≈ 12	(Supplementary	Information).	c,	Correlation	of	model	
predictions	for	association	constants	and	d,	cleavage	rates	for	the	original	parameters	
vs	adjusted	parameters.	
	
Supplementary	Figure	3|	Coarse-grained	model	compared	to	complete	model	
(relates	to	Fig.		3).		a,	Model	predictions	for	association	constants	from	CHAMP	using	
the	complete	20-state	kinetic	model	and	the	coarse-grained	model	described	in	Fig.	3.	
b,	Same	as	a,	for	the	cleavage	rates	from	NucleaSeq.		
	
Supplementary	Figure	4|	additional	precision-recall	curves	(relates	to	Fig.	5).	
Precision-recall	curves	for	our	kinetic	model	(green),	the	CFD	score	(purple)	and	the	
uCRISPR	score	(orange)	for	the	FANCF,	VEGFA	site	1,	EMX1,	HBB	and	RNF2	target	sites.	
Curves	are	shown	for	all	identified	off-targets	(union)	and	shared	identified	off-targets	
(intersection).		
	
Supplementary	Figure	5|	receiver-operator	characteristic	curves	(relates	to	Fig.	
5).	Receiver-operator	characteristic	curves	for	our	kinetic	model	(green),	the	CFD	score	
(purple)	and	the	uCRISPR	score	(orange)	for	the	FANCF,	VEGFA	site	1,	EMX1,	HBB	and	
RNF2	target	sites.	Each	curve	displays	the	true	positive	rate	(TPR)	as	a	function	of	the	
false	positive	rate	(FPR).	Curves	are	shown	for	all	identified	off-targets	(union)	and	
shared	identified	off-targets	(‘intersection’).		
	
Supplementary	Figure	6	|	F1	scores	using	the	intersection	of	identified	off-targets	
(relates	to	Fig	5).	F1-scores	for	our	model	(green),	CFD	prediction	tool	(purple)	and	
uCRISPR	(orange),	for	target	sites	EMX1,	FANCF,HBB,RNF2	and	VEGFA	site	1.	Off-
targets	shared	across	all	experiments	are	included.		For	each	condition,	the	maximum	
obtainable	F1-score	along	the	corresponding	PR-curve	is	displayed	(see	
Supplementary	Figure	S4).	
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